# ENGINEERED UNITS FOR PROCESSING AMARANTH IN DEVELOPING COUNTRIES

Professor Aubrey Sykes, Ph.D., P.E.

**Engineering Department** 

College Engineering

# **Calvin College**

# A quick introductory orientation

(c) 2011 Prof. J. Aubrey Sykes, Ph.D., P.E. Calvin

#### **Calvin College** – Origins

**1857** Est'd by the Christian Reformed Church (CRC) in W. MI 1876 Calvin College and Seminary founded **1900** Education and preprofessional programs 2011 Prof. J. Aubrey Sykes, Ph.D., P.E. Calvin

#### **Calvin College** - Characteristics

- distinctively Christian
- > academically excellent
- liberal arts college
- > shapes minds for intentional participation in the renewal of all things

#### Aims to be

- Profoundly Academic
- Purposefully Renewing
- A Spirited Community
- Generating Promising Futures
- A Remarkable Investment

| Engineering:    | 4000 Students, ~970 graduated annually                  |     |
|-----------------|---------------------------------------------------------|-----|
|                 | ~370 Engineering Students, Graduating ~65/yr            |     |
| Concentrations: | Chemical                                                |     |
|                 | Civil (Structural and Hydrology) and Environmental      |     |
|                 | Electrical (Analog, Power Systems) and Computer (Digita | al) |
|                 | Mechanical (Th. Systems, Machine Design, Vibrations)    |     |
| (c)             | 2011 Prof. J. Aubrey Sykes, Ph.D., P.E. Calvin          | 4   |
|                 | logo Enginooring                                        |     |

Amaranth comes to Calvin College

(c) 2011 Prof. J. Aubrey Sykes, Ph.D., P.E. Calvin

# Amaranth comes to Calvin College Merging of Two Vectors

•

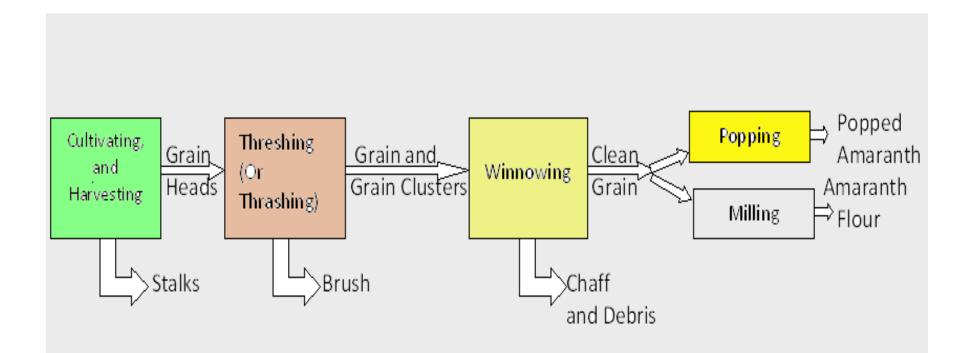
•

- Pigweeds: Amaranth
  - A. Cruentus

٠

٠

٠

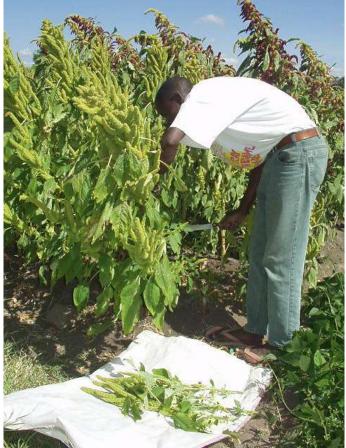

- A. Hypochondriacus
- (A. Caudatus)
- Plainsman
- Developed since ~1976 by USDA, RIEF\*, NGO's, others
- Aubrey sees at RIEF ~1982 and meets experts

CRC – World Relief Committee in **2004** came to Calvin College Engineering for a design of a "seed cleaner"

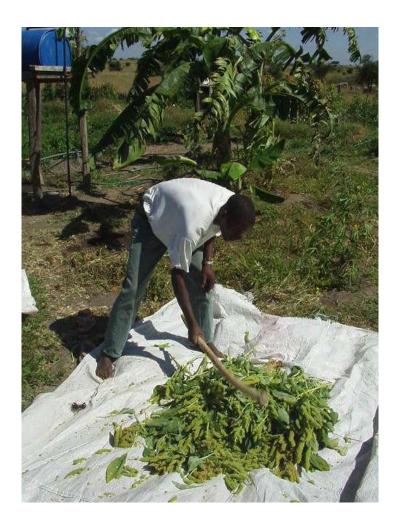
- 2005 Grain Winnower
- 2007 Large Grain Popper
- 2008 Thresher
  - 2009 Sm. Grain Popper-1
- 2011 Sm. Grain Popper-2

(c) 2011 Prof. J. Aubrey

# Amaranth Production Cycle for Developing Countries




(c) 2011 Prof. J. Aubrey 7


# Standard Specifications for Amaranth Processers

- **Safe** and transparent to unskilled, untrained operators, maintenance staff, transportation workers
- Minimal complexity
  - Operated by about 2 women and/or pre-teen age boys (about 2 x 0.05 HP); efficient
  - Simplified construction; uses local shop capabilities
- Easy maintainability using local skills and parts
- Pictographic Manuals for Operation and Maintenance
- Transportable over rough "roads"
- Low Cost affordable within farmer's economics

# Harvesting Cultivated Amaranth with a Machete



#### Amaranth Threshing in Kenya



(c) 2011 Prof. J. Aubrey

#### Amaranth Post Threshing in Kenya



(c) 2011 Prof. J. Aubrey

# Amaranth Seed Recovery After Threshing



(c) 2011 Prof. J. Aubrey Sykes Ph D. P.F. Calvin

# Concept Design for Amaranth Thresher

(c) 2011 Prof. J. Aubrey 13

## **Conceptual Amaranth Thresher**

- · Some useful design ideas
  - Perforated metal to abrade grain heads and allow grain to fall through to collector
  - Threshed grain could be further threshed to process small, broken off heads
- Requires ~3 Hp to operate = fueled engine, not people cranking or bicycling
- Costly to construct; not easy to build and maintain

   (c) 2011 Prof. J. Aubrey
   14

Sykoc Dh D DE Calvin

#### Amaranth Grain Cleaner

- Processes grain clusters and caps on grains
- Hand crank powered (or pedal powered)
- · Light weight; easy for 2 women to relocate

#### **Amaranth Seed Cleaner**



(c) 2011 Prof. J. Aubrey 16

#### Amaranth Grain Cleaner



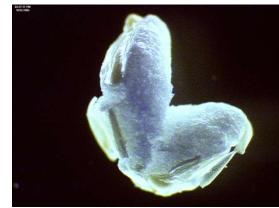


(c) 2011 Prof. J. Aubrey

#### Amaranth Seed Cleaner in

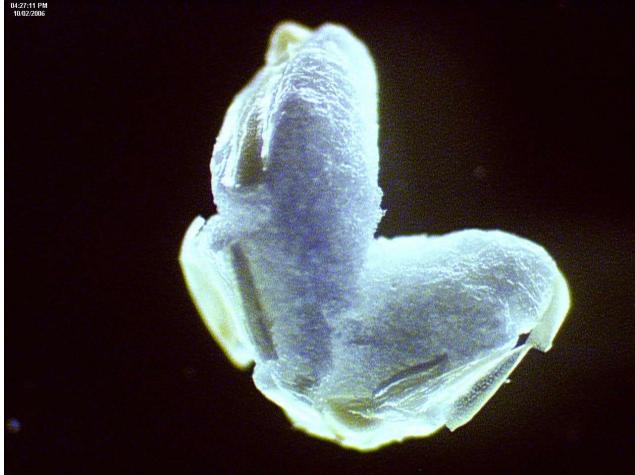


#### Amaranth Seed Cleaner


- High grain recovery (92%)
- Cleaning Quality = commercial quality
- Confused for a thresher; people tried to charge whole heads!
- · Some wanted pedal powering
- · Moist amaranth will "gum up" in winnower

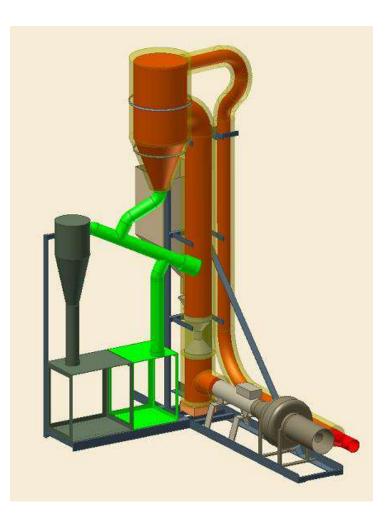
(c) 2011 Prof. J. Aubrey 19 Sykes Ph. D. P.F. Calvin

#### Amaranth Grain Popper







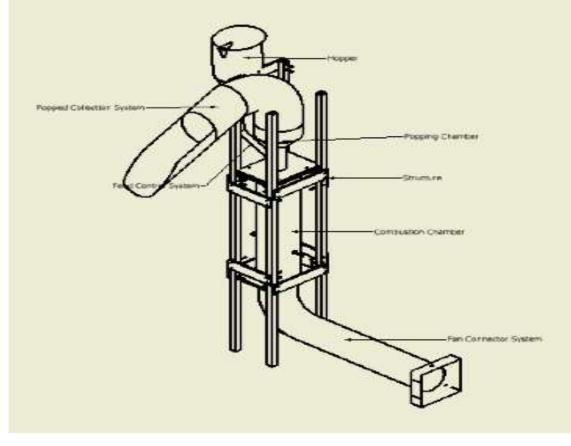


(c) 2011 Prof. J. Aubrey Sykes Ph D. P.F. Calvin

# Amaranth Popped out to Clam Shell



(c) 2011 Prof. J. Aubrey Sykes Ph D. P.F. Calvin

#### Amaranth Popping Machine

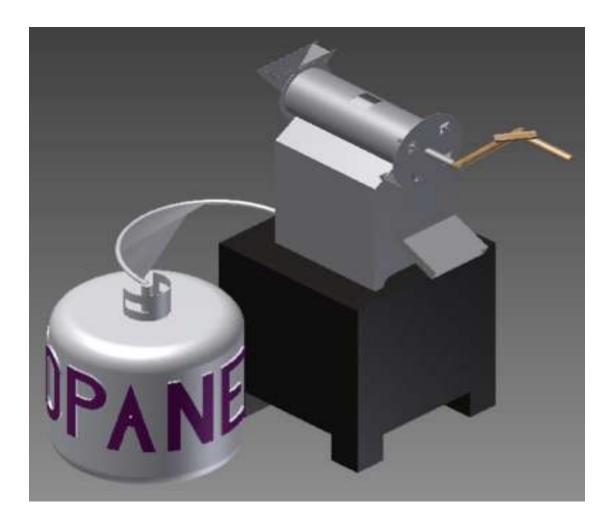





(c) 2011 Prof. J. Aubrey Sykes Ph D. P.F. Calvin

- Goal = 2 to 5 lb/hr
- Simple; easy to build, clean and maintain
- · Services either:
  - Nuclear Family Feeding (8 20 diners); or
  - Micro-business selling popped amaranth, "health" bars (amaranth with nuts, dried fruits, honey, molasses, etc.)

(c) 2011 Prof. J. Aubrey 23




· Video

#### http://www.youtube.com/watch?v=D7yT7B09I-M

(c) 2011 Prof. J. Aubrey 25 Sykes Ph D. P.F. Calvin

- Pops ~5 lbm/hr
- 50+% popped; mediocre quality
- · Thermal damage to blower system possible
- High Energy Consumption



(c) 2011 Prof. J. Aubrey Sykes Ph D. P.F. Calvin

- Important Design Features
- Popping chamber is wire mesh to promote convection heating
- Large chimney for sufficient airflow
- Insulation for efficiency
- Feed runs through inner chamber rod initially and then falls into mesh chamber
- Tube propane burners for even heating
   Sykes Ph. D. P.F. Calvin



(c) 2011 Prof. J. Aubrey

- \* 5 lb/hr, with 2 parallel chambers
- >80% popped
- \* 240-250oC
- \* 15 seconds inside oven
- Propane-heated
- Operated by one person
- \$40 of materials to build
- Can be built and operated easily

# **Popping Production Issues**

- Influence of fuel on health quality of amaranth
- · Possible fuels
- Moisture management of feed amaranth
- · Field deployment

## Thank You

- To about ~12 students, directly; many others indirectly
- · Calvin College administration, faculty and staff
- · Dick Dugger
- · David Brenner
- ECHO, esp. Stan and Beth Doerr
- CRC-WRC, esp. Tom Post and Hillcrest-CRC (Bob Beute)
   (c) 2011 Prof. J. Aubrey 32

# ENGINEERED UNITS FOR PROCESSING AMARANTH IN DEVELOPING COUNTRIES

Thanks for listening!

(c) 2011 Prof. J. Aubrey 33 Sykes Ph D. P.F. Calvin